Shift register

Feedback shift register

Use polynomial whose coefficients are 0,1

$$
\begin{aligned}
& \text { Ex. } g(x)=x^{3}+x^{2}+1=1+x^{2}+x^{3}=1+0 x+1 x^{2}+1 x^{3} \\
& r \equiv \text { degree }=3
\end{aligned}
$$

$$
r=3 \Rightarrow \text { use } 3 \mathrm{FF}^{\prime} \mathrm{s}
$$

1

1	1	0
1	1	1
0	1	1

$\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1\end{array}$
100 (repeat)
complete state diagram

m-sequence :

$$
\underbrace{001011100101110010111 \ldots}_{\text {period }=7}
$$

Lecture Part 2 Page 1

The polynomial $x^{3}+x^{2}+1$ corresponds to LFSR circuit that cycled visits all possible nonzero states (in one loop).

Example 2

$$
g(x)=x^{3}+x^{2}+x+1=1+1 x+1 x^{2}+1 x^{3}
$$

Complete state diagram:

Lecture Part 2 Page 3

